
Software Processes for Electronic Commerce
Portal Systems

Volker Gruhn1 and Lothar Schöpe2

1 Universität Dortmund, Fachbereich Informatik, Lehrstuhl Software-Technologie
Baroper Str. 301, D-44227 Dortmund, Germany

volker.gruhn@uni-dortmund.de

2 Informatik Centrum Dortmund e.V., Abt. Software-Technik
Joseph-v.-Fraunhofer-Str. 20, D-44227 Dortmund, Germany

lothar.schoepe@icd.de

Abstract. The development of electronic commerce (EC) systems is subject to
different conditions than that of conventional software systems. Examples of
such differentiating conditions are that the development requires the integration
of many systems from various suppliers and that content and functionality have
to be coordinated closely. In addition, the roles involved in the development
process, their tasks, qualifications and the software tools used by them, are
different to other processes. An adapted process must cope with important
idiosyncrasies of EC system development: EC systems typically have a high
degree of interaction, which makes factors like ergonomics, didactics and
psychology especially important in the development of user interfaces.
Furthermore, the approach to the development of EC systems should take into
account the "time-to-market" factor and allow development time reduction
while retaining quality. This paper introduces and describes an adapted
software development process for EC systems and its special features using the
development of an EC portal system as an example.

Keywords: Electronic commerce, software process, component based
development, distributed architecture design.

1. Introduction

In this paper, EC is defined as conducting transactions of any kind by means of
electronic media, especially the Internet. The roles of suppliers and customers in these
transactions can be adopted by different parties, such as consumers (C),
administrations (A), businesses (B) or even their employees (E) (Shaw 2000). The
parties involved in EC transactions use information technology (IT) systems to
automate their transactions (Chesher, and Kaura 1998). The examples used in this
paper are based on B2E EC, where an EC portal system is used for automation but
can also be transferred to other types of EC. An EC portal system is an integration
platform for different software systems: conventional (i.e. non EC) software systems

Y. Han, S. Tai, and D. Wikarski (Eds.): EDCIS 2002, LNCS 2480, pp. 315-331, 2002.
© Springer-Verlag Berlin Heidelberg 2002

316 Volker Gruhn and Lothar Schöpe

such as legacy and office systems as well as other EC based systems such as shop
systems.

In the same way that conventional application software systems are developed
according to conventional software development processes, special software
development processes are necessary for the development of EC systems (Bayer,
Junginger, and Kühn 2000, Harrison, Ossher, and Tarr 2000, Gruhn, and Schöpe
2001, Haire, Henderson-Sellers, and Lowe 2001). Even though all aspects mentioned
in the following do also appear in traditional software systems, it seems to be
characteristic for EC system software processes, that they appear in a combined way.
These aspects are:
• They include provisions for new or adapted activities and roles performing them:

o System integration is very important in EC settings, because often, many
heterogeneous systems have to be integrated and these do not necessarily
have a long lifetime. Therefore the add-on or replacement of components
should be planned beforehand.

o The need for attractive and user-friendly user interfaces is very pressing. One
reason for this is that often, users are of various kinds with differing
backgrounds, not known personally making it difficult to obtain feedback.
Roles for graphical design activities are needed in order to provide these user
interfaces.

o Peculiarities in EC customer behaviour make workload hard to plan.
Therefore, performance planning has to be considered strongly for EC
systems. Roles and activities that deal with these issues are needed.

o Content is an integral part of most EC systems and important regarding
quality, quantity and frequency of change. Roles and activities for managing
this content are needed.

• They must take into account that EC software development is a very distributed
process. That is, the roles mentioned above are often adopted by different parties:
software companies develop software components, multimedia companies
develop graphical features for the interface and specialized content providers
supply the content.

• They have to cope with high time pressure expressed in a shorter time-to-market,
yet at the same time preserving the required quality, especially regarding non-
functional requirements such as extensibility.

These aspects are now discussed in more detail:

In EC system settings, many predefined building blocks, like shop systems, content
management systems etc., are often developed by small software suppliers with
special expertise in their field. Companies generally do not want to be dependent on
these small suppliers. So, when designing an EC system, one should have in mind that
some components might be replaced and others might be added at a later point in
time. Thus, focus should be put on system integration activities during the software
development from an early stage on. If an EC system needs to be integrated into an

 Software Processes for Electronic Commerce Portal Systems 317

existing infrastructure, the requisite methods, concepts and software tools for the
integration must be available (Noffsinger, Niedbalski, Blanks, and Emmart 1998).
The methods, concepts and software tools used, as well as the software developers
involved, depend on how the integration is undertaken. For example, security aspects
(use of firewalls, cryptography etc.) might have to be taken into account. These
security aspects then not only have to be considered during implementation, but also
during the design of the EC system. Also, it must be decided if direct sales processes
for products or services should be electronically supported by an EC system. If
support for products is required, the EC system has to be integrated with an open or
closed inventory control system of the merchant. Integration with conventional
domain-specific, highly individual application software systems is also usually
required when supporting direct sales processes for services. These individual
application software systems, termed �legacy systems�, are used by all kinds of
businesses such as insurance companies, governmental agencies, banks, power
utilities etc. (Lamond, and Edelheit 1999).

The functionality of inventory control systems is often covered by ERP systems of
different software manufacturers (e.g. SAP, Oracle, Baan, Sage, PeopleSoft etc.).
These ERP solutions provide interfaces (APIs) for integration with other software
systems. For example, this makes it possible to offer integrated solutions between
Intershop and SAP, OpenShop and Sage or Oracle. In some circumstances, the
integration of several different inventory systems or individual application software
systems may be necessary. This is usually the case for the implementation of EC
malls or EC portals.

While conventional application software systems might win user acceptance mainly
through their functionality and can be positioned against market competitors in that
way, a special class of EC systems (e.g. shop systems) also have to win user (i.e.
customer) acceptance via the user interface. The user interface not only presents
content in a certain layout, but also guides and supports the user. The tasks
concerning the selection of content and its presentation are not included in most
conventional software development processes. The roles performing them are
specialists for software ergonomics, didactics, graphical design and psychology.

Performance is a second factor influencing user acceptance of EC systems. This
becomes more evident when looking at the negative effects of an EC system with
poor performance: users tend to quit their visit to a site after waiting for 8-15 seconds
(Nielsen 2000) for a response, resulting in loss of revenue and image for the company
associated with the site. Therefore, characterization of customer behaviour, workload
forecasting and performance modelling become very prominent activities. Two
characteristics of EC customer behaviour aggravate workload characterization in EC
settings: peak-like request bursts and high-volume data requests that are not typically
found in conventional software systems (Menascé, and Almeida 2000).

Another major factor in acceptance of many EC systems (e.g. shop systems) is being
up-to-date � not only regarding the content, but equally important, content
presentation. In most conventional software application systems, data of different

318 Volker Gruhn and Lothar Schöpe

types and structures is managed and processed in different ways. The more data
managed by the application software system, the more up-to-date it is. In addition, for
a shop system to stay up-to-date, the presentation of its content must be kept up-to-
date. This means that even if the data remains mostly unchanged, its presentation is
subject to change over time. In the productive/maintenance phase, the functionality of
a shop system may remain largely constant, while the presentation of the content is
modified and adapted at certain time intervals by specialists for software ergonomics,
didactics, graphic design and psychology. Extensive statistical testing permits the
measurement of customer acceptance levels with time. And from these statistics, it
can be deduced which parts of the presentation should be changed.

The roles involved in the development of an EC system are more specialized and
more widely spread between participating suppliers than is normally the case with
conventional software systems development. Some of the roles and their activities
have already been mentioned: specialists for software ergonomics, didactics, screen
design and psychology, performance engineers, content engineers and software
developers with expertise in a multitude of technologies such as programming
languages like Java, component models and other frameworks such as Enterprise
Java Beans, Servlets or Java Server Pages, or middleware at different levels such as
XML, SOAP and RMI. In most cases, this variety of required skills is not found in
one single supplier such as a software company. Collaboration between many
suppliers with specialized skills such as multimedia design companies, software
companies including freelancers as experts and content providers is far more likely
to be the case. A process for the development of EC systems has to take this
distribution into account, by considering contract settlement (legal and technical in
terms of interface contracts) and means for easing communication between
suppliers.

Depending on the course of action within the software development process, the
different roles use different software tools, such as shop systems (Intershop,
Openshop etc.), content management systems (Hyperwave, Firstspirit, Pirobase
etc.) or software development/programming environments (JBuilder, Together J
etc.).

As argued previously, when developing EC systems, a special software development
process is needed to take into account these factors. This paper presents such a
process that has been defined during the development of a B2E EC portal system: this
portal system is presented in section 2 and demonstrates some of the above-mentioned
features of EC systems stimulating the demand for adapted software development
processes. Section 3 describes the actual process that dealt with these features and
resulted in the portal system. Section 4 summarizes the main aspects and draws
conclusions from the work on processes suited to support the development of EC
systems.

 Software Processes for Electronic Commerce Portal Systems 319

2. The IPSI Electronic Commerce Portal

An EC portal for insurances was designed and implemented as part of a software
engineering project (Book, Gruhn, and Schöpe 2000). This portal � called Internet
Portal System for Insurances (IPSI) � is intended to provide support for insurance
agents with their daily work. The main goal of the portal is to support business-to-
employee (B2E) processes (Lincke, and Zimmermann 1999). Thus, the
communication between management and employees (in this case between an
insurance company and its agents), but also between employees themselves is
supported by providing information about the product portfolio, tariffs and customer
contacts via the EC portal and its subsystems. This portal system demonstrates some
of the idiosyncrasies of EC systems that generate the demand for adapted software
development processes.

During the requirements analysis phase of the project, it was recognized that the EC
portal serves as an integration platform for different heterogeneous subsystems
(Hasselbring, Koschel, and Mester 2001). Based on an n-tier-architecture, the user
interface and data repository1 are separated from the functional business logic
(Lewandowski 1998) that resides in multiple application components (called
subsystems). At the functional business logic level, the following subsystems of an
EC portal were identified, which show the need for focusing on integrating many
different systems:

Office System: The office system manages any agent�s customer contact addresses
and scheduled appointments. For addresses, a distinction between remote and local
data is made. While remote data is managed by the partner management system of the
insurance company, local data is managed by an office system on the agent�s
computer, to satisfy his or her privacy requirements.

Content Management System: Information of any kind is supplied by the content
management system. Each insurance company employee (e.g. management, back
office employees or agents) can provide information for all other participants. Based
on individual access rights, employees can retrieve information (e.g. new product
portfolio, handbooks, marketing materials, comments on legal decisions in the context
of insurances etc.) from or store information in the content management system for
every other employee. The content management system organizes this information
using different views and access rights.

Procurement System: The procurement system offers consumer goods (e.g.
computer equipment, books or writing material) and services (e.g. training courses).

1 The management of data (e.g personal addresses) is taken over by a traditional host system

like IBM MVS (for remote data) and additionally by a local office system like Lotus Notes
or Microsoft Outlook (for local data). Access to remote data is provided by the electronic
commerce portal via an XML interface. The synchronization of remote and local data is also
guaranteed by the electronic commerce portal.

320 Volker Gruhn and Lothar Schöpe

Every insurance agent can order consumer goods for his daily work. Management can
monitor the orders and control the costs generated by their agents.

Communications System: The communications system represents the interface to
telecommunications media (mobile phones fax and e-mail). The communications
system is able to send documents, notifications or reminders by e-mail, Short
Message Service (SMS) or fax. Notifications and reminders are sent at any user-
defined point of time set by the office system.

Portal Administration System: The portal administration system serves as the
administration center and therefore provides functions to add update or delete portal
user data and other administrative features. The administration system allows for a
single-sign-on, i.e. EC portal users do not need to authorize themselves at each
subsystem of the portal separately. The second purpose of the portal administration
system is the analysis and presentation of logging information provided by the
subsystems.

Search System: The search system allows the user to search for information in the
entire portal, based either on full text search or predefined keywords. The result of a
search request can include appointments, customer addresses, documents from the
content management system, goods ordered or a combination of these elements.

Legacy System: A legacy system is any external system already existing at the
provider�s (in this example the insurance company) site, which has to be connected to
the EC portal. Legacy systems are often implemented as host applications (Coyle
2000), such as a partner management system storing contract data of people insured in
the case of IPSI.

The portal user interface consists of Web pages written in Hypertext Markup
Language (HTML). For management of administrative data, a relational database
management system is used in addition to the subsystems� own repositories.

The system architecture had to fulfill several non-functional requirements pivotal to
most EC systems, but especially to portals integrating many different systems.
Among the most important requirements were the following:
• Not being dependent on the output medium (HTML, WML etc.). In other words,

switching from one medium to another should be possible without significant
porting efforts. Additionally, when changing the user interface, business logic
should remain untouched, allowing for the distribution of development between
user interface specialists and software developers. Therefore, presentation logic
had to be separated from business logic.

• Being extendable in functionality. Once the core system was developed, it had to
be easy for developers to add portal functionality without deeper knowledge of
the inner operation of the system. Therefore, implementation details of
middleware technology had to be hidden from the application developers.

 Software Processes for Electronic Commerce Portal Systems 321

• Being able to integrate several existing systems seamlessly. Not only should
developers be able to add portal functionality for already integrated systems later,
but they should also be able to connect other systems completely unknown at the
time of architecture design to provide access to these systems via the web
through the portal. This aspect is also important when exchanging systems with
equal functionality (e.g. when updating to a new version of a shop system or
when switching to a different shop system manufacturer).

These requirements led to the development of the system architecture depicted in
Figure 1.

Fig. 1. System Architecture

Office, content management, procurement, legacy and communications are all
external systems. To avoid building these from scratch, it was decided to integrate
existing solutions into the EC portal.

Book, Gruhn, and Schöpe (2000) describe the architecture of the portal system in
detail. Only a short overview is given here, with special focus on the previously
mentioned requirements of EC systems.

The user interacts with the EC portal via a Web browser (system architecture also
allows other user agents such as mobile phones). The actual �work� of the system is
done by the subsystems: the office subsystem stores the agent�s contacts,
appointments, tasks etc., the content management system manages all the published
data, the legacy systems handles contract data and so on. To connect the subsystems
to the rest of the application while hiding the specifics of any subsystem, we used
adaptors acting as a façade of a subsystem. If a subsystem is replaced or a new
subsystem is added, only the adaptors have to be replaced.

To be able to add new functionality (which can be the case even if one is not changing
subsystems), a highly configurable dispatcher-controller mechanism using the Java
Reflection API was utilized. In this setting, the dispatcher is responsible for locating a

322 Volker Gruhn and Lothar Schöpe

controller able to handle the user�s request. A controller implements the workflow
necessary to fulfil one request (Hoffner, Ludwig, Grefen, and Aberer 2001),
especially by interacting with the subsystems� adaptor interfaces. Controllers and
subsystem adaptors communicate by exchanging business objects (Baker, and
Geraghty 1998) i.e. entities that are central to the EC portal�s workflow. The
following business objects are therefore known to all controllers and subsystems:

• User
• Contact
• Appointment
• Task
• Message

• Shop Item
• Order
• Order History
• Search Request
• Search Result

Fig. 2. Electronic commerce portal development process model

To schedule an appointment, for example, the respective workflow controller creates
an appointment object from data received by the dispatcher and passes it to a method
of the office subsystem (or to be precise: the subsystem�s adaptor) that adds the
appointment to the user�s calendar. If the user has chosen to be reminded of the
appointment by e-mail in time, the workflow controller additionally creates a message
object, connects a copy of the appointment object to it and passes it to the
communications system which will queue it for e-mail delivery at the time requested
by the user.

To separate the business logic contained in the controllers and maintained by software
developers from the presentation logic maintained by user interface specialists, we
employed a controller-formatter mechanism. The source of the user�s request (e.g. a

324 Volker Gruhn and Lothar Schöpe

The object-oriented design using UML, prototype development, implementation of
adaptors to integrate software systems as subsystems of the EC portal using the Java
programming language and the use of a middleware (CORBA/RMI) for
communication within the portal are all represented in this software development
process. The development process also shows that the use cases described in UML are
an important prerequisite for several sub process models such as the user interface
specification and development.

In the following, the development process of the IPSI electronic commerce portal is
described in reduced form with reference to the subprocess models, but not their
internal details. The subprocess models for system design and implementation are not
described, because in contrast to other activities, they did not show as many electronic
commerce-specific deviations from the design and implementation activities of
conventional development processes. Altogether, we believe that the process model
presented is suitable for all kinds of portal system developments. The characterizing
feature of software processes of this kind are that they integration intensive and that
they require close coordination of content and functionality.

3.1 Requirements Analysis

Requirements analysis starts with a competition analysis, subsequent proposal and
contract evaluation, and project initialization. After this, the functional and non-
functional requirements for the EC software system are identified.

For the development of the EC portal for insurance agents, a competition analysis
should determine if other software companies already offered a similar portal and
which target groups those companies aimed at. Afterwards, the product idea was
presented to several insurance companies, and one insurance company was won as a
partner and potential client. During the proposal and contract evaluation, the
feasibility of the client's requirements was clarified. The goal was a contract basis that
was stable in every regard (content-wise, legal, mercantile) and the creation of a basis
on which a software system could be developed that met the client's functional and
technical requirements.

Identification and description of the portal's functionality and the priority-based
structuring of these functions are very important tasks. Functionality must be
sufficient to cover all client requirements, and yet must offer something unique
compared to competitors� offers in order to gain competitive advantage. It must also
contain opportunities for further development to ensure future competitive advantage.

High product functionality can be used to secure market advantage over competitor
products. However, the realization of high functionality requires a certain effort,
mirrored in the amount of time it takes to realize an EC system. Thus, advantage can
also be gained by securing early market appearance of the EC system (�first mover
advantage�). This means that, according to the "time-to-market" concept, EC software
systems in particular need to be quickly developed and introduced to the market. The

 Software Processes for Electronic Commerce Portal Systems 325

identification of requirements and the assignment of priorities to those requirements
with attention to their impact on development time is a highly significant task when
developing EC systems. To tackle the time-to-market problem, the bifocal approach
proposed by Laartz, Scherdin, Cafarelli, and Hjartar (2000) can be used. This
approach suggests building an EC system in two stages: first, requirements that are
considered most critical regarding user acceptance (e.g. those requirements already
covered by competitors identified during the competition analysis) are implemented
in a first version of a system as quickly as possible, ignoring attributes such as
reusability, scalability or flexibility. At the same time or shortly after the development
of the system�s first version is started, an architecture is designed which satisfies all
functional and also non-functional requirements for a long-term system. The second
system replaces the first once it is finished.

The initial list of requirements resulting from the competition analysis is the starting
point for the creation of a requirements catalog for the entire EC portal to be
developed. This requirements catalog is checked for contradictions, redundancy and
completeness in several ways; for example, by interviewing users and providers.
Users are people or groups of people who will actually use the portal, while providers
are persons or groups of persons who will run the portal in order to provide its
services to the users (in the context of this paper, users are insurance agents and the
provider is the insurance company). Both users and providers have different,
potentially competing requirements.

During the interviews for the IPSI portal, it became clear that some insurance
companies already used supporting systems for their agents. These systems were
examined in order to identify further requirements. After consolidating all
requirements from the different sources, the requirements catalog was corrected and
extended as required, and requirements re-checked for errors.

3.2 Subsystem Selection

In most cases, EC systems are not developed independently of an existing hardware
and software infrastructure. Usually, the EC systems have to be integrated into the
existing infrastructure by sharing data with its systems. However, the sharing of data
between the EC system and existing software systems may not always be sufficient �
sometimes, the use of existing functionality is necessary. Thus, the IPSI electronic
commerce portal exchanges data with its subsystems as well as with the database
systems of the insurance company (e.g. UDS for BS2000). In this way, the portal can
supply the insurance agent with data of people insured and their contracts.
Furthermore, the portal needs the functionality of a complex tariff computation
module, e.g. for a life insurance. Existing software systems, such as the latter are
termed legacy systems. In order to realize each subsystem, it must be decided if
existing software systems fulfil the client's requirements, and if an existing software
system can be integrated or if it is necessary to develop new software.

326 Volker Gruhn and Lothar Schöpe

For the IPSI electronic commerce portal, it was decided to integrate existing software
systems for most subsystems. This decision was followed by market analysis to
determine which existing systems should be used. The analysis also took into account
non-functional criteria such as price, availability, support, platform, and possibilities
of integrating the system (discussed in the next section), and led to the selection of
Microsoft Outlook 2000, Pirobase 4.0, SmartStore 2.0 and several freeware
communication applications for the subsystems office, content management,
procurement and communications respectively (see Figure 3.

Fig. 3. Subsystems of the electronic commerce portal

3.3 Prototype Development

In addition, it had to be determined if the software systems selected provided a
programming interface (API), or if an interface could be developed. This was
achieved by developing prototypes on the basis of key features (major requirements in
form of use cases), with the goal to identify opportunities for integrating the software
systems with each other (Figure 4). For each software system, key features were
defined, that had to be realized by the prototype. The prototypes should show if the
features of the underlying software system could be accessed through its interface.

Based on the prototypes, the effort, cost and time for the development of the whole
EC system could be estimated. This estimate was used to verify the "time-to-market"
aimed for by marketing, and to plan accompanying measures such as advertising etc.
In the case of the IPSI electronic commerce portal, more resources were necessary for
the development of an interface to integrate MS Outlook 2000 than for the
development of the communications subsystem based on Java libraries. The effort
required to integrate the partner database legacy system was relatively low since the
adaptor could be implemented using XML (Haifi 2000). However, this is not always
the case. Depending on the type of legacy system, integration may be more difficult.
For example, under some conditions the integration of an SAP R/2 system with an EC
system can only be achieved through the generation of batch input folders and could
therefore require more attention in terms of resource capacity devoted to that
integration task.

 Software Processes for Electronic Commerce Portal Systems 327

Fig. 4. Prototype development subprocess model

3.4 GUI Development

The graphical user interface for an EC system is developed in two steps. First, a user
interface prototype is designed. This prototype is also used by marketing/sales to
support accompanying advertising measures. The prototype development begins with
writing a storybook based on use cases. This storybook is then used to define a style
guide and, in a second step, to realize and implement the user interface for the EC
system. For the IPSI electronic commerce portal, this was done for multiple access
channels (WWW, WAP).

Fig. 5. User interface design subprocess model

In addition to the portal�s specific functionality in the insurance B2E application
domain, its content is a significant element. Content comprises all the information the
EC portal provides, as well as its presentation within the user interface. Content often
has multi-media characteristics, i.e. it comprises textual information, moving and still
pictures and audio information. Consequently, a content manager responsible for
multi-media information plays an important role in the software development process.
This is a new role that can consist of several other roles, such as the media author who
collects textual information and reworks it for a consistent presentation; the media
designer responsible for the audio-visual design of the user interface; and the media
producer who researches available media, creates images, graphics, animations, audio

328 Volker Gruhn and Lothar Schöpe

and video sequences, and clarifies copyright issues. Media editors are responsible for
quality assurance in the multi-media content part of the application.

In addition to the role of a content manager, with its many tasks and responsibilities,
the role of an ergonomics advisor has to be taken on by a team member. The
ergonomics advisor�s task is to ensure that the user interface of the EC portal meets
ergonomic criteria, i.e.

• it is suited to the tasks the user has to accomplish
• it guides the user by being self-explanatory and gives additional help on request
• it lets the user decide how to use the system without forcing him or her to follow

a predefined set of procedures
• it signals and describes user errors and allows their correction with little effort
• it can be adapted to the user�s level of experience

User manuals can be differentiated into tutorials and references. For the creation of
the user manuals, a style guide is used that describes what the complete user
documentation should look like. The storybook already used for the user interface
prototype was also used to create the tutorial. (Figure 5)

3.5 Integration and System Test

In the implementation phase, the system architecture built during the design phase
was implemented in the Java programming language. In this phase, elementary parts
of the system architecture (the controllers, adaptors, formatters and business objects
mentioned in section 2) were incrementally implemented, class tests were performed
and classes were combined to form subsystems (or components). All implemented
subsystems subsequently went through a component test. Based on the use cases, test
data sets were created to test the subsystems functionality.

In the integration phase, the tested components were then integrated into the EC
portal. The complete integrated system was then subject to system and integration
tests. To do this, the test data sets used for the component test were extended, and new
sets were created. After a successful system test, the EC portal was delivered to the
customer, together with the user tutorial in the system delivery phase (Figure 6).

4. Conclusion

Several conclusions can be drawn from the IPSI development process and are
described in this section:

The development process for the IPSI electronic commerce portal is characterized by
the high effort necessary to integrate the subsystems. This experience can be

 Software Processes for Electronic Commerce Portal Systems 329

transferred to the development of other EC systems, because an EC system usually
has to be integrated into a pre-existing software and hardware infrastructure. The
integration effort comprises not only the design and implementation of interfaces
(APIs), but also testing of those interfaces. The more complex the subsystems are, the
more effort is required for the interface test since the necessary test drivers and stubs
have to be equally complex.

Every introduction of an EC system to the market should happen within an adequate
�time-to-market�. Consequently, an early estimate of the feasibility, required effort
and duration of the development project has to be made. This is a particularly difficult
task in the EC context, because many new technologies (such as new Java libraries
and XML) are used and not every developer is skilled in these technologies. What
makes estimates even more complex is the fact that in some cases the effort needed to
implement a specific component depends on implementation details (like the side
effects of using RMI). These details can only be clarified by developing (vertical)
prototypes. Only after implementing these prototypes we were able to assess the
feasibility of the architecture and to calculate the effort and duration needed for the
implementation tasks.

Productive use of IPSI showed that architecture openness is a crucial issue. Many
further legacy systems had to be added after the initial release, standard tools were
exchanged for individual customers. All these modifications depend on a clear and
modular architecture. With hindsight, it would have been useful to develop IPSI as a
component-based system on the basis of a standard component model like Enterprise
Java Beans or DCOM.

As in every software system, features supporting the user (e.g. a self-explanatory user
interface and online help) also should not be neglected in EC systems. It is important
that the user-support features are tailored to the intended EC system target group. For
example, in e-government, with its very heterogeneous target group, user-supporting
features are mandatory. The same is true for EC systems used in an intra- or extranet,
such as the EC portal for insurance agents. Consequently, the way the user interface
of an EC system is designed significantly contributes to user acceptance of the
system. This means that the software development process must include the creation
of a user interface prototype that can form the basis for discussions with ergonomics
specialists and also serve as a marketing tool.

All the activities mentioned above have been included in the IPSI development process.
Nevertheless, there are some more aspects to be kept in mind when developing EC
systems, not included adequately in the IPSI development process to date. For
example, consideration of performance issues is extremely important, especially when
using highly layered object-oriented architectures for Web applications. Thus,
performance modeling and testing (Menascé, and Almeida 2000) should be a central
activity in any software development process for EC systems. In general, quality-
assuring activities of any kind are often victims of the �time-to-market� philosophy.
Here, the goal must be to construct software development processes that ensure a
consistent high quality of EC systems, despite the changed and dynamic conditions,
and take into account the shorter development time for these systems.

330 Volker Gruhn and Lothar Schöpe

Fig. 6. Integration and system test subprocess model

5. References

1. Baker, S. and Geraghty, R. (1998): Java for Business Objects. In Developing Business
Objects. 225-237. Carmichel, A. (ed). SIGS Cambridge University Press.

2. Bayer, F., Junginger, S. and Kühn, H. (2000): A Business Process-Oriented Methodology for
Developing E-Business Applications. In Proc. 7th European Concurrent Engineering
Conference. 123-132. Baake, U., Zobel, R. and Al-Akaidi, M. (eds). SCS Publishing House.

3. Book, M., Gruhn, V. and Schöpe, L. (2000): Realizing An Integrated Electronic Commerce
Portal System. In Proc. of the Americas Conf. on Information Systems. 156-162. Chung, M.
(ed). Association for Information Systems.

4. Chesher, M. and Kaura, R. (1998): Electronic Commerce and Business Communications.
Springer, Berlin, Heidelberg, New York.

5. Coyle, F. (2000): Legacy Integration � Changing Perspectives. IEEE Software 17(2): 37-41.
6. Deiters, W. and Gruhn, V. (1994): The Funsoft Net Approach to Software Process

Management. Int. Journal of Software Engineering and Knowledge Engineering 4(2): 229-
256. World Scientific Publ. Company.

7. Gruhn, V. and Schöpe, L. (2001): A Software Process for an Integrated Electronic
Commerce Portal System. In Proc. 8th European Workshop on Software Process
Technology. 90-101. Ambriola, V. (ed). Springer, Berlin.

8. Haire, B., Henderson-Sellers, B. and Lowe, D. (2001): Supporting Web Development in the
OPEN process: Additional Tasks. In Proc. 12th COMPSAC 2001. 383-389. IEEE Computer
Society.

9. Haifi, L. (2000): XML and Industrial Standards for Electronic Commerce. Knowledge and
Information Systems 2(4): 487-497. Springer, London.

10. Hasselbring, W., Koschel, A. and Mester, A. (2001): Basistechnologien für die
Entwicklung von Internet-Portalen. In Datenbanksysteme für Büro, Technik und
Wissenschaft. 517-526. Heuer, A., Leymann, F. and Priebe, D. (eds). Springer, Berlin,
Heidelberg, New York.

11. Harrison, W., Ossher, H. and Tarr, P. (2000): Software Engineering Tools and
Environments. In Proc. 22nd Int. Conf. on Software Engineering. 263-277. Finkelstein, A.
(ed). ACM Press.

12. Hoffner, Y., Ludwig, H., Grefen, P. and Aberer, K. (2001): CrossFlow: Integration
Workflow Management and Electronic Commerce. SIGecom Echanges, Newsletter of the
ACM SIG on Electronic Commerce 2(1): 1-10. ACM Press.

 Software Processes for Electronic Commerce Portal Systems 331

13. Lamond, K. and Edelheit, J. (1999): Electronic Commerce Back-Office Integration. BT
Technology Journal 17(3): 87-96. Kluwer Academic Press.

14. Laartz, J., Scherdin, A., Cafarelli, D. and Hjartar, K. (2000): Evolve your architecture. CIO
Magazine, Issue September 15, 2000.

15. Lewandowski, S. (1998): Frameworks for Computer-Based Client/Server Computing. ACM
Computing Surveys, 30(1): 3-27. ACM Press.

16. Lincke, D. and Zimmermann, H. (1999): Integrierte Standardanwendungen für Electronic
Commerce � Anforderungen und Evaluationskriterien. In Managementhandbuch Electronic
Commerce. 197-210. Hermanns, A. and Sauter, M. (eds). Verlag Franz Vahlen, Munich.

17. MENASCÉ, D.A. and ALMEIDA, V.A.F. (2000): Scaling for e-Business � Technologies,
Models, Performance, and Capacity Planning. Prentice Hall.

18. NIELSEN, J. (2000): Designing Web Usability: The Practice of Simplicity. Riders
Publishing, Indianapolis.

19. Noffsinger, W.B., Niedbalksi, R., Blanks, M. and Emmart, N. (1998): Legacy Object
Modeling speeds Software Integration. Communications of the ACM 41(12): 80-89. ACM
Press.

20. Shaw, M.J. (2000): Electronic Commerce: State of the Art. In Handbook on Electronic
Commerce, 3-24. Shaw, M., Blanning, R., Stader, T. and Whinston, A. (eds). Springer,
Berlin, Heidelberg, New York.

	Introduction
	The IPSI Electronic Commerce Portal
	Process Description
	Requirements Analysis
	Subsystem Selection
	Prototype Development
	GUI Development
	Integration and System Test

	Conclusion
	References

